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Motivation and the Lucas sequence

Lucasnomials combinatorially (with Bennet, Carrillo, Machacek)

Lucasnomials algebraically (with Tirrell à la Stanley)

Comments and open problems



For integers 0 ≤ k ≤ n the corresponding binomial coefficient is(
n

k

)
=

n!

k!(n − k)!

?
∈ Z. (1)

A. Give a combinatorial interpretation to
(n
k

)
.

Interpretation 1.
(n
k

)
= # of k-element subsets of {1, . . . , n}.

Interpretation 2. Consider paths p in the integer lattice Z2 using
unit steps E (add the vector (1, 0)) and N (add the vector (0, 1)).

p =

E N

E E N

The number of paths p from (0, 0) to (m, n) is
(m+n

m

)
because p

has m + n total steps of which m must be E (and then the rest N).

B. Factor the top and bottom of (1) into primes and show that all
primes in the denominator cancel into the numerator.



Let s and t be variables. The corresponding Lucas sequence is
defined inductively by {0} = 0, {1} = 1, and

{n} = s{n − 1}+ t{n − 2}

for n ≥ 2. For example,

{2} = s, {3} = s2 + t, {4} = s3 + 2st.

We have the following specializations.
(1) s = t = 1 implies {n} = Fn, the Fibonacci numbers.
(2) s = 2, t = −1 implies {n} = n.
(3) s = 1 + q, t = −q implies {n} = 1 + q + · · ·+ qn−1 = [n]q.
So when proving theorems about the Lucas sequence, one gets
results about the Fibonacci numbers, the nonnegative integers, and
q-analogues for free.



The Lucas analogue of
∏

i ni/
∏

j kj is
∏

i{ni}/
∏

j{kj}. When is
the Lucas analogue a polynomial in s, t? If so, is there a
combinatorial interpretation? Given a row of n squares, let T (n)
be the set of all tilings of the row with dominoes and monominoes.

T (3) :

The weight of a tiling T is

wtT = snumber of monominoes in T tnumber of dominoes in T .

Similarly, given any set of tilings T we define its weight to be

wt T =
∑
T∈T

wtT .

To illustrate wt(T (3)) = s3 + 2st = {4}.
Theorem
For all n ≥ 1 we have {n} = wt(T (n − 1)).

Previous work on the Lucas analogue of the binomial coefficients
was done by Benjamin-Plott and Savage-Sagan.



Given 0 ≤ k ≤ n the corresponding Lucasnomial is{
n

k

}
=

{n}!
{k}!{n − k}!

where {n}! = {1}{2} . . . {n}. This is a polynomial in s, t. Consider
the staircase δn in the first quadrant of R2 consisting of a row of
n − 1 unit squares on the bottom, then n − 2 one row above, etc.
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δ6:
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a tiling:

The set of tilings of δn is T (δn) consisting of all tilings of the rows
of δn. Using the combinatorial interpretation of {n} we see

wt T (δn) = {n}!



Theorem For 0 ≤ k ≤ n we have
{n
k

}
is a polynomial in s, t.

Proof sketch. It suffices to construct a partition of T (δn) such that
{k}!{n − k}! divides wtB for all blocks B of the partition. Given
T ∈ T (δn) we will find the B containing T as follows. Construct a
lattice path p in T going from (k , 0) to (0, n) and using unit steps
N (north) and W (west) by: move N if possible without crossing a
domino or leaving δn; otherwise move W . If n = 6 and k = 3, and

(3, 0)

(0, 6)

T =

(3, 0)

(0, 6)

P =

An N step just after a W is an NL step; otherwise it is an NI
step. B is all tilings with path p that have the same tiles as T in
all squares to the right of each NL step and in all squares to the
left of each NI step. This gives a partial tiling , P. The variable
parts of P contribute {k}!{n − k}!.



Proposition

{
n

k

}
= {k + 1}

{
n − 1

k

}
+ t{n − k − 1}

{
n − 1

k − 1

}
.

Proof. From the previous proof we have{
n

k

}
=
∑
P

wtP

where the sum is over the fixed tiles in all partial tilings P of δn
whose path begins at (k , 0). If the path p of P begins with an N
step then the tiling to its left contributes {k + 1} and the rest of p
contributes

{n−1
k

}
. If p begins with WN then the tiling to its right

contributes t{n − k − 1} and the rest of p contributes
{n−1
k−1
}

.

(3, 0)

(0, 6)

P1 =

(3, 0)

(0, 6)

P2 =



Define the sequence of Lucas atoms, Pn = Pn(s, t), inductively by∏
d |n

Pd = {n}.

As examples {1} = P1 so P1 = 1. Also, {2} = P1P2 = P2. In
general, if p is prime then Pp = {p}. When n = 6

P6 =
{6}

P1P2P3
=

s5 + 4s3t + 3st2

s(s2 + t)
= s2 + 3t.

Theorem

(i) For all n we have Pn(s, t) ∈ N[s, t] where N = {0, 1, 2, . . . }.
(ii)

∏
n{n}/

∏
k{k} is a polynomial if and only if, after expressing

each factor as a product of atoms, all atoms in the
denominator cancel. In this case, the quotient is in N[s, t].



Theorem
For all 0 ≤ k ≤ n we have

{n
k

}
∈ N[s, t].

Proof.
By the previous theorem it suffices to show, using {n} =

∏
d |n Pd ,

that the number of factors of Pd in the numerator is at least as
great as the number in the denominator for all d . Now Pd is a
factor of {n} if and only if d |n. So the number of Pd ’s dividing
{n}! is the floor function bn/dc. Similarly, the number of Pd ’s
dividing {k}!{n − k}! is bk/dc+ b(n − k)/dc. We are done since
bk/dc+ b(n − k)/dc ≤ bn/dc.
The cyclotomic polynomials Φn = Φn(q) are defined inductively by∏

d |n

Φd(q) = qn − 1.

Recall that {n}q+1,−q = 1 + q + · · ·+ qn−1 = (qn − 1)/(q − 1).

Proposition

For all n ≥ 2 we have Pn(q + 1,−q) = Φn(q).



There are Lucas analogues of many results about cyclotomic
polynomials.

Theorem (Gauss)

If n ≥ 5 is square-free and satisfies n ≡ 1 (mod 4), then there are
polynomials An(q) and Bn(q). such that

4Φn(q) = A2
n(q)− (−1)(n−1)/2nq2B2

n(q)

where An(q),Bn(q) ∈ Z[q] are palindromic.

Theorem (S and Tirrell)

If n ≥ 5 is square-free and satisfies n ≡ 1 (mod 4), then there are
polynomials En(s, t) and Fn(s, t). such that

4Pn(s, t) = E 2
n (s, t)− nt2F 2

n (s, t)

where En(s, t),Fn(s, t) ∈ Z[s, t].



The proof of thie Lucas analogue of Gauss’ Theorem uses gamma
expansions. A polynomial p(q) =

∑
i≥0 ciq

i has total degree

tdeg p(q) = k + l

where k , l are the smallest and largest indices with ck 6= 0 and
cl 6= 0, respectively. Call p(q) with tdeg p(q) = d palindromic if

ci = cd−i

for 0 ≤ i ≤ d . If p(q) is palindromic then its gamma expansion is

p(q) = γ0(1 + q)d + γ1(1 + q)d−2q + · · · =
∑
i≥0

γi (1 + q)d−2iqi

Example. p(q) = q + 7q2 + 7q3 + q4 has tdeg p(q) = 1 + 4 = 5.
p(q) is palindromic: c0 = c5 = 0, c1 = c4 = 1, c2 = c3 = 7.
p(q) = 0 · (1 + q)5 + 1 · (1 + q)3q + 4 · (1 + q)q2.



It is easy to see either inductively or combinatorially that

{n} = γ0s
n−1 + γ1s

n−3t + γ2s
n−5t2 + · · ·

for coefficients γi ≥ 0. So

[n]q = {n}1+q,−q = γ0(1+q)n−1−γ1(1+q)n−3q+γ2(1+q)n−5q2−· · ·

which is the gamma expansion of [n]q. From {n} =
∏

d Pd it
follows that Pd can be written in the same form as {n}. So any
Lucas analogue of a quotient of products can be written in this
form as well. And substiting s = 1 + q, t = −q gives the gamma
expansion of the corresponding q-analogue which must be a
palindrome. This makes it possible to lift the palindromes in
Gauss’ Theorem to the polynomials in s, t in our result.



1. Other combinatorial constants. Given any finite irreducible
Coxeter group, the Lucas analogous of the Fuss-Catalan number
Catk(W ) and the Fuss-Narayana numbers Nark(W , i) are in
N[s, t]. For example, in type A the analogue is

Cat1{An−1} =
1

{n + 1}

{
2n

n

}
.

Given a, b relatively prime positive integers we have the Lucas
analogue of the corresponding rational Catalan number

Cat{a, b} =
1

{a + b}

{
a + b

a

}
.

analogue combinatorial proof algebraic proof

Catk{W }, W = A – D Y Y

Catk{W }, W = E – I ? Y

Nark{W , i}, all W Y*: W = A ,k = 1/? Y
Cat{a, b} ? Y

*Nenashev



2. Combinatorics of the Pn. Even though we know Pn ∈ N[s, t]
for all n, we have no combinatorial interpretation for the its
coefficients in general.

Proposition

If p is prime then

Pp =
∑
k≥0

(
p − k − 1

k

)
sp−2k−1tk .

and

P2p =
∑
k≥0

[(
p − k

k

)
+

(
p − k − 1

k − 1

)]
sp−2k−1tk .

If a combinatorial interpretation can be found, it would be
interesting to give a combinatorial proof of∏

d |n

Pd = {n}.



3. Unimodality. A polynomial p(q) =
∑

i≥0 ciq
i is unimodal if

there is some index m such that

c0 ≤ c1 ≤ · · · ≤ cm ≥ cm+1 ≥ . . .

If p(q) is palindromic and has nonegative coefficients in its gamma
expansion, then p(q) is unimodal. A Lucas analogue of a quotient
of products has alternating gamma coefficients. Is it possible to
use sign-reversing involutions to prove that some of these Lucas
analogues are unimodal? This has been studied in a paper of
Brittenham, Carroll, Petersen, and Thomas but only successfully
on one example.
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