Combinatorial and Algebraic Approaches to Lucas Analogues

Bruce E. Sagan Michigan State University www.math.msu.edu/~sagan

March 8, 2019

Motivation and the Lucas sequence

Lucasnomials combinatorially (with Bennet, Carrillo, Machacek)

Lucasnomials algebraically (with Tirrell à la Stanley)

Comments and open problems

For integers $0 \le k \le n$ the corresponding *binomial coefficient* is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \stackrel{?}{\in} \mathbb{Z}. \tag{1}$$

A. Give a combinatorial interpretation to $\binom{n}{k}$. Interpretation 1. $\binom{n}{k} = \#$ of k-element subsets of $\{1, \ldots, n\}$. Interpretation 2. Consider paths p in the integer lattice \mathbb{Z}^2 using unit steps E (add the vector (1,0)) and N (add the vector (0,1)).

$$p = \underbrace{\begin{bmatrix} E & E \\ N \end{bmatrix}}_{E} N$$

The number of paths p from (0,0) to (m,n) is $\binom{m+n}{m}$ because p has m+n total steps of which m must be E (and then the rest N).

B. Factor the top and bottom of (1) into primes and show that all primes in the denominator cancel into the numerator.

Let s and t be variables. The corresponding Lucas sequence is defined inductively by $\{0\} = 0$, $\{1\} = 1$, and

$$\{n\} = s\{n-1\} + t\{n-2\}$$

for $n \ge 2$. For example,

$${2} = s, {3} = s^2 + t, {4} = s^3 + 2st.$$

We have the following specializations.

- (1) s = t = 1 implies $\{n\} = F_n$, the Fibonacci numbers.
- (2) s = 2, t = -1 implies $\{n\} = n$.
- (3) s = 1 + q, t = -q implies $\{n\} = 1 + q + \dots + q^{n-1} = [n]_q$.

So when proving theorems about the Lucas sequence, one gets results about the Fibonacci numbers, the nonnegative integers, and *q*-analogues for free.

The Lucas analogue of $\prod_i n_i / \prod_j k_j$ is $\prod_i \{n_i\} / \prod_j \{k_j\}$. When is the Lucas analogue a polynomial in s,t? If so, is there a combinatorial interpretation? Given a row of n squares, let $\mathcal{T}(n)$ be the set of all tilings of the row with dominoes and monominoes.

$$\mathcal{T}(3):$$
 \bullet \bullet \bullet

The *weight* of a tiling T is

$$\text{wt } T = s^{\text{number of monominoes in } T} \ t^{\text{number of dominoes in } T}.$$

Similarly, given any set of tilings $\mathcal T$ we define its weight to be

$$\operatorname{wt} \mathcal{T} = \sum_{T \in \mathcal{T}} \operatorname{wt} T.$$

To illustrate $\operatorname{wt}(\mathcal{T}(3)) = s^3 + 2st = \{4\}.$

Theorem

For all
$$n \ge 1$$
 we have $\{n\} = \operatorname{wt}(\mathcal{T}(n-1))$.

Previous work on the Lucas analogue of the binomial coefficients was done by Benjamin-Plott and Savage-Sagan.

Given $0 \le k \le n$ the corresponding *Lucasnomial* is

$${n \brace k} = \frac{\{n\}!}{\{k\}!\{n-k\}!}$$

where $\{n\}! = \{1\}\{2\} \dots \{n\}$. This is a polynomial in s, t. Consider the *staircase* δ_n in the first quadrant of \mathbb{R}^2 consisting of a row of n-1 unit squares on the bottom, then n-2 one row above, etc.

The set of *tilings of* δ_n is $\mathcal{T}(\delta_n)$ consisting of all tilings of the rows of δ_n . Using the combinatorial interpretation of $\{n\}$ we see

$$\operatorname{wt} \mathcal{T}(\delta_n) = \{n\}!$$

Theorem For $0 \le k \le n$ we have $\binom{n}{k}$ is a polynomial in s, t.

Proof sketch. It suffices to construct a partition of $\mathcal{T}(\delta_n)$ such that $\{k\}!\{n-k\}!$ divides $\operatorname{wt} B$ for all blocks B of the partition. Given $T\in\mathcal{T}(\delta_n)$ we will find the B containing T as follows. Construct a lattice path p in T going from (k,0) to (0,n) and using unit steps N (north) and W (west) by: move N if possible without crossing a domino or leaving δ_n ; otherwise move W. If n=6 and k=3, and

An N step just after a W is an NL step; otherwise it is an NI step. B is all tilings with path p that have the same tiles as T in all squares to the right of each NL step and in all squares to the left of each NI step. This gives a partial tiling, P. The variable parts of P contribute $\{k\} \mid \{n-k\} \mid$.

Proposition
$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \{k+1\} \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + t\{n-k-1\} \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}.$$

Proof. From the previous proof we have

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \sum_{P} \operatorname{wt} P$$

where the sum is over the fixed tiles in all partial tilings P of δ_n whose path begins at (k,0). If the path p of P begins with an N step then the tiling to its left contributes $\{k+1\}$ and the rest of p contributes $\binom{n-1}{k}$. If p begins with WN then the tiling to its right contributes $t\{n-k-1\}$ and the rest of p contributes $\binom{n-1}{k-1}$. \square

Define the sequence of *Lucas atoms*, $P_n = P_n(s, t)$, inductively by

$$\prod_{d|n} P_d = \{n\}.$$

As examples $\{1\} = P_1$ so $P_1 = 1$. Also, $\{2\} = P_1P_2 = P_2$. In general, if p is prime then $P_p = \{p\}$. When n = 6

$$P_6 = \frac{\{6\}}{P_1 P_2 P_3} = \frac{s^5 + 4s^3t + 3st^2}{s(s^2 + t)} = s^2 + 3t.$$

Theorem

- (i) For all n we have $P_n(s,t) \in \mathbb{N}[s,t]$ where $\mathbb{N} = \{0,1,2,\dots\}$.
- (ii) $\prod_n \{n\} / \prod_k \{k\}$ is a polynomial if and only if, after expressing each factor as a product of atoms, all atoms in the denominator cancel. In this case, the quotient is in $\mathbb{N}[s,t]$.

Theorem

For all $0 \le k \le n$ we have $\binom{n}{k} \in \mathbb{N}[s, t]$.

Proof.

By the previous theorem it suffices to show, using $\{n\} = \prod_{d|n} P_d$, that the number of factors of P_d in the numerator is at least as great as the number in the denominator for all d. Now P_d is a factor of $\{n\}$ if and only if d|n. So the number of P_d 's dividing $\{n\}!$ is the floor function $\lfloor n/d \rfloor$. Similarly, the number of P_d 's dividing $\{k\}!\{n-k\}!$ is $\lfloor k/d \rfloor + \lfloor (n-k)/d \rfloor$. We are done since $\lfloor k/d \rfloor + \lfloor (n-k)/d \rfloor \leq \lfloor n/d \rfloor$.

The *cyclotomic polynomials* $\Phi_n = \Phi_n(q)$ are defined inductively by

$$\prod_{d|n} \Phi_d(q) = q^n - 1.$$

Recall that $\{n\}_{q+1,-q} = 1 + q + \dots + q^{n-1} = (q^n - 1)/(q - 1)$.

Proposition

For all
$$n \ge 2$$
 we have $P_n(q+1,-q) = \Phi_n(q)$.

There are Lucas analogues of many results about cyclotomic polynomials.

Theorem (Gauss)

If $n \ge 5$ is square-free and satisfies $n \equiv 1 \pmod 4$, then there are polynomials $A_n(q)$ and $B_n(q)$, such that

$$4\Phi_n(q) = A_n^2(q) - (-1)^{(n-1)/2} nq^2 B_n^2(q)$$

where $A_n(q), B_n(q) \in \mathbb{Z}[q]$ are palindromic.

Theorem (S and Tirrell)

If $n \ge 5$ is square-free and satisfies $n \equiv 1 \pmod 4$, then there are polynomials $E_n(s,t)$ and $F_n(s,t)$. such that

$$4P_n(s,t) = E_n^2(s,t) - nt^2 F_n^2(s,t)$$

where $E_n(s,t)$, $F_n(s,t) \in \mathbb{Z}[s,t]$.

The proof of thie Lucas analogue of Gauss' Theorem uses gamma expansions. A polynomial $p(q) = \sum_{i>0} c_i q^i$ has total degree

$$tdeg p(q) = k + I$$

where k, l are the smallest and largest indices with $c_k \neq 0$ and $c_l \neq 0$, respectively. Call p(q) with tdeg p(q) = d palindromic if

$$c_i = c_{d-i}$$

for $0 \le i \le d$. If p(q) is palindromic then its gamma expansion is

$$p(q) = \gamma_0 (1+q)^d + \gamma_1 (1+q)^{d-2} q + \cdots = \sum_{i>0} \gamma_i (1+q)^{d-2i} q^i$$

Example. $p(q) = q + 7q^2 + 7q^3 + q^4$ has tdeg p(q) = 1 + 4 = 5. p(q) is palindromic: $c_0 = c_5 = 0$, $c_1 = c_4 = 1$, $c_2 = c_3 = 7$. $p(q) = 0 \cdot (1+q)^5 + 1 \cdot (1+q)^3 q + 4 \cdot (1+q)q^2$.

It is easy to see either inductively or combinatorially that

$$\{n\} = \gamma_0 s^{n-1} + \gamma_1 s^{n-3} t + \gamma_2 s^{n-5} t^2 + \cdots$$

for coefficients $\gamma_i > 0$. So

$$[n]_q = \{n\}_{1+q,-q} = \gamma_0(1+q)^{n-1} - \gamma_1(1+q)^{n-3}q + \gamma_2(1+q)^{n-5}q^2 - \cdots$$

which is the gamma expansion of $[n]_q$. From $\{n\} = \prod_d P_d$ it follows that P_d can be written in the same form as $\{n\}$. So any Lucas analogue of a quotient of products can be written in this form as well. And substiting s=1+q, t=-q gives the gamma expansion of the corresponding q-analogue which must be a palindrome. This makes it possible to lift the palindromes in Gauss' Theorem to the polynomials in s,t in our result.

1. Other combinatorial constants. Given any finite irreducible Coxeter group, the Lucas analogous of the Fuss-Catalan number $\operatorname{Cat}^k(W)$ and the Fuss-Narayana numbers $\operatorname{Nar}^k(W,i)$ are in $\mathbb{N}[s,t]$. For example, in type A the analogue is

$$Cat^{1}\{A_{n-1}\} = \frac{1}{\{n+1\}} {2n \brace n}.$$

Given a, b relatively prime positive integers we have the Lucas analogue of the corresponding rational Catalan number

$$\mathsf{Cat}\{a,b\} = \frac{1}{\{a+b\}} \left\{ \begin{matrix} a+b \\ a \end{matrix} \right\}.$$

analogue	combinatorial proof	algebraic proof
$Cat^k\{W\},\ W=A-D$	Y	Υ
$Cat^k\{W\},\ W=E-I$?	Υ
$\operatorname{Nar}^k\{W,i\}$, all W	Y*: $W = A$, $k = 1/?$	Υ
$Cat\{a,b\}$?	Υ
*Nenashev	'	

2. Combinatorics of the P_n **.** Even though we know $P_n \in \mathbb{N}[s,t]$ for all n, we have no combinatorial interpretation for the its coefficients in general.

Proposition

If p is prime then

$$P_p = \sum_{k>0} {p-k-1 \choose k} s^{p-2k-1} t^k.$$

and

$$P_{2p} = \sum_{k \geq 0} \left[\binom{p-k}{k} + \binom{p-k-1}{k-1} \right] s^{p-2k-1} t^k. \quad \Box$$

If a combinatorial interpretation can be found, it would be interesting to give a combinatorial proof of

$$\prod_{d\mid n} P_d = \{n\}.$$

3. Unimodality. A polynomial $p(q) = \sum_{i \geq 0} c_i q^i$ is *unimodal* if there is some index m such that

$$c_0 \leq c_1 \leq \cdots \leq c_m \geq c_{m+1} \geq \ldots$$

If p(q) is palindromic and has nonegative coefficients in its gamma expansion, then p(q) is unimodal. A Lucas analogue of a quotient of products has alternating gamma coefficients. Is it possible to use sign-reversing involutions to prove that some of these Lucas analogues are unimodal? This has been studied in a paper of Brittenham, Carroll, Petersen, and Thomas but only successfully on one example.

LISTENING!

THANKS FOR